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1. Introduction 

The increase produced in mobility, both 
people’s and goods’, during the last 50 years has 
derived in a problematic traffic congestion. 
Among all transportation modes, railway 
systems have been shown as the most efficient 
and reliable, which has motivated its 
development. Another reason for this 
development is the increasing concern about 
issues of pollution and sustainability. 

Railway networks are very complex, and 
usually large, systems. The planning of a railway 
system involves several players: transportation 
agencies, construction and operating companies, 
groups of citizens, all of them having different 
sensibilities and therefore different and 
sometimes conflicting goals. The planning and 
construction of railway lines require large 
amount of money, and its execution takes a long 
time. These and other characteristics makes the 

planning process a very complex task. Railways 
can be classified into two main categories: 
passengers and freight systems, although they 
often share the infrastructure. Passenger lines 
can be grouped into long-distance, medium-
distance and/or regional, and suburban or city 
systems. Rapid transit is a term that usually 
encloses several systems (metro, underground, 
light metro, light railway, monorail, and 
commuter trains separated right-of-way bus) that 
are able to move people in cities and 
metropolitan areas, and are often separated from 
other modes of transportation, thus providing 
better performance than other means. 

The sequential railway planning process 
requires the knowledge of mobility patterns, 
which are usually coded by means of trip origin-
destination matrices. These matrices can be 
obtained from the already functioning modes of 
transportation, by means of surveys, using traffic 
counts and mobile phone call data. 
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Given is a set of stations linked by railway tracks, forming an undirected 
railway network. One or more lines are formed in this network. 
Each line consists of an origin station, a destination station, and a number 
of intermediate stations. In order to complete the line configuration, 
it is needed to decide the frequency (number of services per hour) and the 
capacity (number of carriages) for each train. This problem is called the 
line frequency and capacity setting. In this work, an IL based algorithm for 
solving this problem when the objective function is the net profit, is 
proposed. A version of this problem that takes into account the passenger 
behavior is also considered. Finally, some computational results are 
presented. 
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There are many papers dealing with the 
problem of estimating OD-matrices from 
incomplete data. However, the future ridership 
of a railway system depends on the final design, 
the lines (with their frequencies and other 
features), and the other modes of transportation. 
For these reasons, the planning of railway 
systems has to take into account other 
transportation modes (private car, bus, etc.). 
These alternative modes sometimes compete and 
sometimes cooperate with the railway system. 

The planning process starts with the location 
of stations and tracks that join them. This is a 
pure network design problem that can be 
classified as an optimum network design for 
multi-commodity flow. 

The second step is the line planning, which 
consists of choosing the origin, itinerary, stops, 
destination and frequency of each line. With this 
information, the exact time of arrival and 
departure from each station is fixed, thus 
constructing the timetable. 

The following step is the design of train 
routes, in which a feasible sequence of line runs 
or services is obtained for a given period. Then 
the set of duties for the crew is determined. 
Finally, these duties are grouped into roster, 
which is a pattern of duties to be fulfilled for a 
certain number of consecutive days, Figure 1. 
Different goals give rise to different line 
planning problems. The two classical objectives 

are to maximize the number of direct trips [1], 
and to minimize the cost [2]. However, the first 
one often leads to long travelling times, and the 
second is an only-operator oriented criterion. 
Minimizing travelling time is another classical 
objective, which has been considered in [3,4]. A 
review of the literature on line planning can be 
found in [5]. 

These lines may cross each other in some 
multiple stations usually at different levels, 
giving this way the possibility of a transfer from 
one line to the other. Thus, network design and 
line planning, except frequency setting, 
constitute the first step of the planning process, 
the second step being frequency and fleet size 
setting [6]. A second important difference 
between rapid transit systems and long and 
medium distance railways, is that in 
metropolitan areas several competing modes are 
available. Since metro passengers travel over 
short distance every day, one of their main 
concerns is travelling times, and their 
comparison with the travel times offered by 
other modes of transportation. This paper 
incorporates a mode choice based on a logit 
function. The objective is to decide the 
frequency and capacity of each line, maximizing 
the net profit of the system, which is computed 
as the difference between the revenue and the 
total cost. At first sight, this objective seems to 
be oriented to the operator. However, the profit 
itself is also a society oriented objective, because 

 

Figure 1. General railway and rapid transit planning processes 
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it also maximizes the revenue, which in turns 
means maximizing the ridership. This way, a 
system maximizing the profit also attracts as 
many travelers as possible for whom the rapid 
transit system is better, in term of traveling time, 
than the alternative transportation modes. 
Therefore, the profit is also oriented to 
passengers. 

The rest of the paper is structured as follows. 
In Section 2 the problem is formally described, 
and is modeled as a mathematical programming 
problem. Due to its extreme complexity, in 
Section 3 several algorithms are proposed to 
more efficiently solve the problem. These 
algorithms are tested and compared with each 
other in Section 4. 

 

2. The Problem 

2.1 Data and notation 

In this section, the input data that are needed 
to define the Simultaneous Frequency and 
Capacity Problem (SFCP) are presented. 

 
• Given is a set of connected lines L = {ℓ1, . . . , 
ℓ|L|} in the RTS. Let N = {i1, . . . , in} be the set 
of stations that constitute the lines in L. In 
railway terminology, a line is characterized by 
two terminal stops, its itinerary and the train size. 
Other important aspects of each line ℓ are its 
length denoted by lenℓ and measured in length 
units, and its number of stations associated, 
denoted by nℓ. Thus, the itinerary of each line ℓ 
∈ L can be represented as {(i1, i2 ), (i2 , i3 ), . . . , 
(inℓ-1 , inℓ)}, where i1 , inℓ are the terminal stations 
of the line, and {i1, i2, i3 , . . . , inℓ} and {inℓ, inℓ-1, 
. . . , i1} define the two maximal paths of this line 
in the network. 

 
• Each couple of (directed) arcs (ij1, ij2) and (ij2, 
ij1) define an (undirected) edge {ij1, ij2}. Let A be 
the set of (directed) arcs, and let E = {{i, j}: i, j 
∈ N, i < j, (i, j) or (j, i) ∈ A} be the set of edges 
defined from A. 

• From these sets, an RTS is describes as the 
graph ((N, E), L). 

 
• Let dij be the length of each arc (i, j) ∈ A. It is 
assumed that dij = dji. The parameter dij can also 
represent the time needed to traverse arc (i, j), 
transforming distances in times by means of the 
parameter λ, which represents the average 

distance traveled by a train in an hour 
(commercial speed). The same value of λ for all 
trains is assumed. A parameter νℓ representing 
the cycle time of line ℓ is considered and is, 
measured as the time needed for a train of line ℓ 
to go from the initial station to the final station 
and returning back. Thus, νℓ = 2 · lenℓ/λ. 

 
• Let uci be the time spent in changing platforms 
at station i. 

 
• Let W = {w1. . . w|W |} ⊆ N × N be a set of 
ordered origin-destination (OD) pairs, w = (ws, 
wt). For each OD pair w ∈ W, gw is the expected 
number of passengers per hour for an average 
day and ��

���is the travel time associated to w 
using the alternative mode, respectively. 

 
• The passenger fare, the passenger subsidy 
(price that the government pays to the operator 
company for each trip) and the total number of 
hours that a train is operating per year are 
denoted by η, τ and ρ, respectively. 

 
• The cost of operating one locomotive is cloc, 
and the cost of operating one carriage is ccarr, 
both per unit of length. The crew cost ccrew per 
train and year is also given. 

 
• The purchase cost of one locomotive is Iloc, and 
one carriage is Icarr. A horizon of ρˆ years is 
assumed for the purchase of trains to be 
recovered. A minimum number ymin of carriages 
for each train is considered. 

 
• The capacity of a carriage is given by parameter 
Θ, measured in number of passengers seating 
and standing. 

 
• A finite set of possible headways H for lines of 
the Rapid Transit System (RTS) is given. 

 
2.2 The mathematical model 

The problem can be modeled as a 
mathematical programming subject using the 
following sets of variables: 

 
• xℓ ∈ H is an integer variable representing the 
headway of line ℓ (time between services, 
expressed in minutes). 
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• yℓ ∈ Z+ is the number of carriages used by each 
train of line ℓ. 

 
  ��

��� > 0 represents the travel time of pair w 
using the RTS network. 

 
��

��� ∈ [0, 1] is the proportion of OD pair w 
passengers using the RTS network, which 
depends on the travel time using the RTS 
(variable ��

���) and on the travel time using the 
alternative mode (parameter uALT). 

 

���
��  = 1 if the OD pair w traverses arc (i, j) ∈ A 

using line ℓ, 0 otherwise. 

Note that these variables are set to zero whenever 
(�, �)Ï ℓ, to reduce the size of the problem. 

 

• ��
���� = 1  if demand of pair w transfers at 

station k from line ℓ to line ℓ′, 0 otherwise. Note 
that these variables are set to zero whenever k 
does not belong to the two lines, nor when k is 
the origin or destination of pair w, in order to 
reduce the size of the problem.  

The objective is the maximization of the net 
profit zNET defined as: 

 

���������[���(h+ t) ∑ ����
��� −�∈�

��� ∑ l���∈� (���� + ��. �����) − ∑ ���∈� (���� +
�����. ��) − ������� ∑ ���∈� ]                            (1) 

 

The first term in Equation (1) is the revenue 
zREV, which depends on the number of 
passengers traveling (and therefore paying a 
ticket) in the RTS. The second term computes 
the rolling stock cost: the cost of operating the 
trains, which depends on the number of 
carriages. The last two terms are the fleet 
acquisition cost and the crew operating cost, 
respectively. 

The constraints of the problem are: 

 

��
���� ≥ ∑ ���

�� + ∑ ���
���

�:(�,�)∈���:(�,�)∈� − 1,   � ∈

�, � ≠ ��  ∈ �, � ∈ � ∩ ��, � ≠ ��, ��                    (2) 

 

� � ���
��
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�� = [120. ���� ��⁄ l], � ∈ �                              (7) 

 

�� ≥ ����, � ∈ �                                                 (8)   

��
���  > 0, � ∈ �                                                       

  �� ∈ �, � ∈ �                                                               

���
��, ��

����  ∈ {0,1}   

� ∈ �, {�, �} ∈ �, (�, �) ∈ �, � ∈ �, � ∈ �, � ∈ � 

                 

Constraints (2) ensure that if an OD pair w 
enters station k ∈ N using one line, and exits 
from this station using another line, then a 
transfer is done. Equation (3) are the flow 
conservation constraints. Equation (4) imposes 
an upper bound on the maximum number of 
passengers that each line can transport per hour, 
which depends on the number of carriages and 
headway of this line. Constraints (5) represent 
the modal split, which uses the travel time 
described in Equation (6). Constraints (7) 
describe the required fleet for each line. A lower 
bound on the number of carriages for each line is 
forced by Constraints (8). 
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The maximization of Equation (1), subject to 
constraints (2)–(8), is a Mixed Integer Non-
Linear Programming (MINLP) program that 
solves our problem. The nonlinearities of this 
model will be specified in Section 3.1, as well as 
some ways to avoid them. 

 

3. Algorithms 

In this section two different algorithms for 
solving the problem described in Section 2 are 
presented. The first one is based on efficient 
approaches of the mathematical model. It can be 
observed that the mathematical model described 
in Section 2.2 is operator’s oriented since each 
path associated to each OD pair is not necessarily 
the shortest path. On the other hand, the second 
algorithm takes into account the passenger point 
of view, by selecting the shortest path for each 
OD pair, yielding to solutions more realistic than 
the mathematical programming platform. 

 
3.1 ILP-based algorithm 

As mentioned, the MINLP presents several 
nonlinearities which can be avoided. In the 
following, such nonlinearities are described as 
well as the way for avoiding them. 

1. In Constraints (4), the binary variable ���
��  is 

multiplying the positive variable ��
���. This 

product can be easily linearized, by defining a 

new set of variables ���
�� as follows: 

���
�� ≤ ���

��, � ∈ �, {�, �} ∈ �, � ∈ �                  (9) 

 

��
��� − �1 − ���

��� ≤ ���
��, � ∈ �, {�, �} ∈ �, �

∈ �                                        (10) 

���
�� ≤ ��

���, � ∈ �, {�, �} ∈ �, � ∈ �              (11) 

 
2. The definition of the proportion of passengers 
using the RTS, Constraints (5), uses the non-
linear function logit. This nonlinearity is avoided 
by approximating the logit function by a linear 
function which takes into account three intervals 
on its abscissa axis as follows. Let z be the 
variable ��

��� representing the travel time in the 
RTS and let F(z) = 1/(1 + exp(α - β(��

���- z)) be 
the corresponding logit function for z. The 
piecewise linear function is defined as; 

 

�(�) ≔ �

1,

−
�

4�
+

2 + ���
���

4
,

0,

                (12)        

        � ∈

� < ��
��� −

2

�

���
��� −

2

�
, ��

��� +
2

�
�

� ≥ ��
��� +

2

�

                                

3. The required fleet described in Constraints (7), 
uses the ceiling function, which is non-linear as 
well, and the headway variables are in the 
denominator. This last nonlinearity can be 
avoided by fixing the headway of each line as a 
parameter. 

Let ILP (x1 , ..., x|L|) be the model obtained 
after avoiding the two first nonlinearities, in 
which the headway of each line ℓ, xℓ ∈ H is fixed 
as a parameter. The reader may note that the 
resulting program is an Integer Linear 
Programming model. Then, the algorithm 
presented in this section solves ILP (x1 , ..., x|L|), 
for all feasible combinations of headways (x1 , 
..., x|L|) ∈ H|L|, keeping as a final output the best 
solution found. The solution procedure is shown 
in Algorithm 1. 

 

Data: As SFCF problem 

For each combination of headways (x1 , ..., x|L|) 
do  solve ILP (x1 , ..., x|L|); 

end 

Result: arg ���(�� ,...,�|�|)  ���(x1 , . . . , x|L|)  

Algorithm 1: Pseudocode for the ILP-based 
algorithm 

 
3.2 A passenger’s oriented algorithm 

At this stage, an algorithm is presented that 
solves the problem at hand by taking into 
account the passenger point of view. The idea is 
to iteratively check all possible combinations of 
headways as in the ILP (x1 , ..., x|L|) algorithm, 
and once the headway is fixed, the demand is 
assigned in the RTS taking into account the 
shortest path associated to each OD pair. Later, 
the number of passengers traveling on each line 
and arc is computed. For each line, the arc with 
the highest number of passengers defines the 
minimum capacity that such line should have. 
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Once these minimum required number of 
carriages for each line has been calculated, the 
profit of the RTS can be easily computed. The 
Algorithm 2 shows its pseudo code. 

 

Data: A railway system ((N, E), L), a set of 
possible headways H. 

for each possible combination of headways do 
Let T = {} be the set for keeping solutions; 

Compute the shortest path for each OD pair and 
the number of passengers traveling on each line 
and arc; 

for each line ℓ do  

   Find the arc eℓ of ℓ with maximum load;  

   Find the minimum number of carriages needed     
to transport all passengers traversing eℓ;  

end Compute the profit zNET ; 

T = T ∪{zN ET}; 

end 
Compute the maximum net profit; 

Result: The combination of headways and 
capacities which yield the maximum profit. 

Algorithm 2: Passenger’s oriented 

 
4. Computational Experiments 

In this section a computational comparison 
between the two algorithms is presented, over 
ten small-size networks randomly generated. All 
these networks have been obtained from the 
topology described in Figure 2, which consists of 
eight stations and three lines. The number of 
passengers of each OD pair w was obtained 

according to the product of two parameters: a 
parameter randomly chosen in the interval 
[5,15], by using a uniform distribution, whereas 

the other one was randomly chosen in [51, 59], 
generating this way around 30.000 passengers 
for each instance. To define each arc length, the 
coordinates of each station were set randomly by 
means of a uniform distribution. So, the arc 
length at each instance is different since each arc 
connects to different positions of stations. The 
travel times ��

���using the alternative mode, 
were obtained by means of the Euclidean 
distance and a speed of 20 km/h, whereas, the 
travel time in the RTS were obtained according 
to the  riding times with a speed of 30 km/h, the 
waiting time and the transfer time. Costs are 
based on the specific train model Civia as in [6]. 

All the calculations for Algorithm 1 were 
performed in GAMS/CPLEX, whereas the 
Algorithm 2 was implemented in Java, both in a 
computer with 8 Gb of RAM memory and 2.8 
Ghz CPU. In three of the ten instances, a 
difference in the solutions returned by both 
algorithms is observed. Note that, line ℓ1 and ℓ3 
have a common track 4 - 6. In this track, travel 
times for Seed 2 and Seed 10 are the same over 
line ℓ1 and ℓ3, since both lines have the same 
headway in the corresponding solutions. So, for 
trips traversing this track with the same travel 
time by ℓ1 and ℓ3, Algorithm 1 assigns 
passengers on the most profitable line whereas 
Algorithm 2 assigns randomly passengers on 
line ℓ1 or ℓ3. In the Seed 8-instance, Algorithm 1 
assigns passengers on a path that need not be the 
shortest path in the RTS, this algorithm might 
yield smaller number of carriages than 
Algorithm 2 and, therefore, better net profit. 

 

5. Conclusions 

It is reasonable to think that computational 

experiments on medium-size networks could 
yield to solutions more interesting for analysis. 
So, as a future work, these algorithms will be 
tested over medium-size networks. 

 

Figure 2. Line configuration used for the experiments 
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Table 1: Summary of results for instances without the same solution for both 
algorithms 

 Algorithm 1 
instance  ZNET ZREV  xℓ  yℓ  CPU time  trips 
seed2  4.65E+09  1.16E+10  [20, 20, 20]  [1,5,3]  160.26  13892 
seed8  5.79E+09  1.37E+10  [12, 20, 20]  [2,5,4]  181.42  16477 
seed10  7.29E+09  1.44E+10  [20, 20, 20]  [4,6,4]  182.75  17329 
 Algorithm 2 
instance  ZNET ZREV  xℓ  yℓ  CPU time  trips 
seed2  4.40E+09  1.16E+10  [20, 20, 20]  [3,5,3]  3,618  13892 
seed8  5.60E+09  1.37E+10  [12,20,20]  [3,5,4]  3.533  16477 
seed10  7.17E+09  1.44E+10  [20, 20, 20]  [5,6,4]  3.703  17329 
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